

Basic Idea Expression ratio image: Captures illumination changes • Material-independent • Transfer (mapping) without 3D info

Related work Expression mapping based on geometrical warping • Williams 90: • Litwinowicz & Williams 94: Image morphing • Pighin et al. 98 • Seitz & Dyer 96 Physical simulation • Badler & Platt 81 • Waters 87 • Terzopoulos & Waters 90 • Lee et al. 95

Related work in relighting

Marschner & Greenberg 97:

Use the ratio of synthetic image pair to modify a photo Debevec 98:

Similar spirit, use color difference instead

Riklin-Raviv & Shashua 99:

Relight faceB from the relighted image of faceA Stoschek 00:

Combined with image morphing

Lambertian model

Assume there are *m* point light sources:

$$I = \mathbf{r} \sum_{1 \le i \le m} S_i I_i n \cdot l_i \equiv \mathbf{r} E(n)$$

where: $S_i = \begin{cases} 0 & \text{If the point cannot be seen from light i} \\ 0 & \text{Otherwise} \end{cases}$

Expression ratio image

Before deformation: $I = \mathbf{r} E(n)$

After deformation: I' = r E(n')

Expression ratio image: $\frac{I'}{I} = \frac{E(n')}{E(n)}$

ERI:

- captures illumination changes caused by surface deformation
- is material independent

Surface deformation mapping

Two surfaces

- same normals at the corresponding points
- different materials

• şame deformations

	Before deform.	After deform.
Surface 1:	$I_1 = \mathbf{r}_1 E(n)$	$I_1' = \mathbf{r}_1 E(n')$
Surface 2:	$I_2 = \mathbf{r}_2 E(n)$	$I_2' = \mathbf{r}_2 E(n')$

$$\frac{I_1^{'}}{I_1} = \frac{I_2^{'}}{I_2} \quad \Longrightarrow I_2^{'} = \frac{I_1^{'}}{I_1} I_2$$

Expression mapping

Assumption:

Human faces have approximately the same normals

	Neutral	Fynrancian
	riculiai	Expression
Person A:		
I CISUII A.		
	* a	и
		₽
		/0
Darson D.	7	$I_{\cdot} = \frac{-u}{I}$
Person B:	I_b	b 1 1 b

Image alignment

Manually mark face features

Use image warping to obtain pixel correspondence

Algorithm version#1

Input: Images $A \quad A' \quad B$

Step1: Mark feature points

 $v_b = v_b + v_{a'} - v_a$ Let B_g be the warped image of B

Step3: Align A , A^\prime with B_{g} by image warping.

Step4: Compute ratio image: $\Re = \frac{A'}{A}$

Step5: $B' = \Re \cdot B_{\phi}$

Filtering of ERI

Problem:

Noise due to pixel mis-alignment

Adaptive Gaussian filter of ERI

For each pixel:

Step1. Compute weight: amount of deformation at this pixel weight = 1 - ImageCorrelation(A, A')

Step2. Apply small-window Gaussian filter if weight is large Apply large-window Gaussian filter if weight is small

Algorithm

Input: Images $A \quad A' \quad B$

Step1: Mark feature points

Step2: For each feature point v_b in \emph{B} , warp it:

 $v_b = v_b + v_a - v_a$ Let B_g be the warped image of B

Step3: Align A , A' with B_{a} by image warping.

Step4: Compute ratio image: $\Re = \frac{A'}{A}$

Step5: Filter R

Step6: $B' = \Re \cdot B_a$

Different lighting conditions Scale intensity of all the light sources: OK Change lighting direction: No Simple remedy: histogram matching use luminance ratio

Conclusion Generate photo-realistic expression details Enhance existing expression-mapping techniques: • Difference vector + ERI = Convincing F.E.

Future work

- Improve image alignment

 Line and curve features for image marking

 Better image warping algorithm

Expression toolkit

- Expressions of different people can be encoded as ERIs, and interpolated
 Generate desired expressions from a database
- of ERIs

Apply to other objects:

• Cloth?

Thanks

Ko Nishino Conal Elliott Michael Cohen Peter-Pike Sloan

Emiko Unno Alex Colburn Steve Harris Chuck Jacobs Brian Meyers Sing Bing Kang Sashi Raghupathy P. Anandan